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Université Cheikh Anta Diop, Senegal

E-mail: bengeloun@sun.ac.za and norbert.hounkonnou@cipma.uac.bj

Received 9 February 2009, in final form 13 May 2009
Published 30 June 2009
Online at stacks.iop.org/JPhysA/42/295202

Abstract
This paper deals with an extension of our previous work (Ben Geloun
and Hounkonnou 2007 J. Phys. A: Math. Theor. 40 F817) by considering an
alternative construction of canonical and deformed vector coherent states
(VCSs) of the Gazeau–Klauder type associated with generalized spin–orbit
Hamiltonians. We define an annihilation operator which takes into account
the finite-dimensional space of states induced by the k-photon transition
processes of the two-level atom interacting with the single-mode radiation
field. The class of nonlinear VCSs (NVCSs) corresponding to the action of
the annihilation operator is deduced and expressed in terms of generalized
displacement operators. Various NVCSs including their ‘dual’ counterparts
are also discussed. Also, by using the Hilbert space structure, a new family
of NVCSs parametrized by unit vectors of the S3 sphere has been identified
without making use of the annihilation operator.

PACS numbers: 42.50.−p, 03.65.Fd, 02.20.−a

1. Introduction

Still attracting the interest of theoreticians, the vector coherent states (VCSs) [1] have been
recently studied in statistics [2] and remain relevant in nonlinear quantum optics [3–11]. In
particular, their appearance in quantum deformations of physical systems such as generalized
spin–orbit Hamiltonians has been proved in [10, 11].
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Let us clarify the precise meaning of ‘generalized’ spin–orbit interactions according to
[11]. In the context of semiconductor physics and spintronics, Rashba [12] and Dresselhaus
[13] interactions are typical examples of spin–orbit potentials (for a review of spintronics and
spin-Hall effect, see for instance [14]) which can be recast as [15]

VR = iμ(aσ− − a†σ+), VD = λ(aσ+ + a†σ−) (1)

with coupling constants μ and λ, respectively; a and a† are the usual Heisenberg generators
and, given Pauli-spin matrices σ1, σ2 and σ3, we define σ± := (σ1 ± iσ2)/2. In quantum optics,
the Jaynes–Cummings model [16], idealizing the radiation–matter interaction, possesses, in
the rotating wave approximation, a spin–orbit interaction which can be written in the same
form as VD [17, 18].

In canonical quantum formulation, a prime notion of nonlinearity for spin–orbit interaction
can be probed by considering a k-photon contribution to an intensity-dependent coupling λ(N)

complex function of the number operator N = a†a. The introduction of such a number-
dependent and k-multiphoton coupling becomes significant in the study of the intensity-
dependent interaction between a single atom and the radiation field with the atom making
k-photon transitions [5, 19–21], as well as in the study of the quantized motion of a single ion
in an anharmonic oscillator potential trap [22, 23]. A second stage is reached by adding further
nonlinearity by the introduction of f -deformed quantum algebras [24] defined by the modified
Heisenberg generators coupled to a free continuous function f of the number operator N such
that

A− = af (N), A+ = f (N)a†, {N} = A+A− = Nf 2(N), (2)

[A−, A+] = {N + 1} − {N}. (3)

Only the limit f (N) → 1 reproduces the ordinary Heisenberg algebra. It was in this
framework, introduced by Jannussis et al [24], that the earlier notion of ‘nonlinear coherent
states’ (NCSs) was highlighted. NCSs built from a realistic physical model are due to de Matos
Filho and Vogel [3] and involve nonclassical properties and quantum interference effects.
Afterward, Manko and co-workers [4] interpreted that the f -oscillator action is provided as
corresponding to a specific vibration for which the frequency of oscillation becomes energy
dependent. Recently, many developments involving the algebra (3) have been made in special
function theory, quantum groups and generalized coherent state (CS) quantization (see [25,
26] and references therein).

An f -deformed quantum version of VR,D (1), incorporating the afore mentioned
nonlinearities, can be written as

�k,ε = B+
k,εσ+ + B−

k,εσ−, B+
k,ε := A−εkλε(N), B−

k,ε := λ−ε(N)Aεk, (4)

where the symbol ε = ± fixes the notation as λ+(N) := λ(N) and λ−(N) := λ(N), with the
bar denoting complex conjugation.

The canonical spin–orbit Hamiltonian includes a dynamical part of a photon field
of frequency ω and a Zeeman spin term of atomic frequency ω0 [15]. It finds
henceforth a nonlinear extension regarding deformed spin–orbit Hamiltonians of the reduced
(dimensionless) form [11]

Hred
k,ε = (1 + ε)

2
({N + 1} + {N}) +

1

2
({N + 1} − κ{N})σ3 + B+

k,εσ+ + B−
k,εσ−. (5)

The ratio (1 + ε) = ω/ω0 determines the rotating wave approximation if and only if the
detuning parameter ε satisfies |ε| � 1 and |ω − ω0| � ω,ω0. The real parameter κ is
introduced in order to recover some known models. A list of significant reduced models
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connected with (5), its canonical limits f (N) → 1 and κ → 1 and applications in quantum
optics, in condensed matter physics and in semiconductor physics, in particular, in the so-
called domain of spintronics studying some new spin-dependent phenomena in order to build
a new generation of electronic devices, are available in [11] and references therein.

We shall refer to the model defined by Hred
k,ε as the (k, ε, κ, f ) model, or more simply, as

the f -deformed model. This model has an exactly solvable spectrum and its Hilbert space
of eigenstates can be decomposed into a finite sequence of k initial states related to k-photon
processes and two infinite sequences of states commonly named ‘towers’.

In the previous studies [10, 11], classes of VCSs and nonlinear VCSs (NVCSs) have been
defined for spin–orbit Hamiltonians associated with a nontrivial action of the annihilation
operator only on the two towers. Furthermore, these families of NVCSs meet all requirements
of Gazeau–Klauder [27, 28] with the main vector character formulated in terms of the
unit sphere S2 vectors [10] or labeled by two spin states [11]. The case of annihilation
operator matrix eigenvalue problem (with diagonal and quaternion matrices) for NVCSs was
successfully treated. However, these investigations have ignored the initial states induced
by the k-transition processes, with the annihilation operator canceling them by definition. It
could be interesting then to ask if NVCSs may include the finite-dimensional space spanned by
this limited sequence of states. Moreover, as far as we can establish, deformed displacement
operators which could generate NVCSs have not been addressed in prior developments.
Recalling that displacement operators for VCSs over matrix domains have been defined by
Ali et al [1] and also for NCSs ([6, 7, 29] and references therein), one could investigate their
form in the case of NVCSs.

In this paper, we give a new construction of NVCSs (including canonical) of the Gazeau–
Klauder type associated with generalized spin–orbit Hamiltonians. We define an annihilation
operator which takes into account the finite-dimensional space of states of the initial k-photon
processes. The class of NVCSs corresponding to the action of the annihilation operator is
expressed in terms of generalized displacement operators. Issues concerning ‘dual’ VCSs and
T operators [7] are tackled and exactly solved for certain families of parameters. Besides, a
new family of NVCSs parametrized by S3 unit vectors with an exact resolution of the identity
has been identified without making use of the annihilation operator. The latter class involves
the definition of CSs identified onto the finite-dimensional Hilbert space [30, 31].

In summary, this paper addresses the following new results:

(i) A generalization of previous constructions of Gazeau–Klauder S2 and matrix NVCSs for
spin–orbit Hamiltonians to Gazeau–Klauder type S2, normal and quaternionic NVCSs by
including the finite sequence of states induced by the k-photon processes in the definition
of the generalized deformed Barut–Girardello eigenvalue problem. This allows us to solve
properly the issue of discontinuity of NVCSs previously observed at z = 0 in [10, 11, 17].

(ii) The explicit identification of novel classes of solvable NVCSs (canonical, generalized
(p, q)-deformed in the sense of [25, 26]) with an exact resolution of the identity
characterized by a new set of deformation parameters covering all related previous results.

(iii) An extension to the normal matrix domain of the NVCSs with a nontrivial resolution of the
identity requiring an integration over a U(2) group. This provides a concrete realization
of the formulation by Ali et al [1] in nonlinear deformed models.

(iv) The introduction of the concept of deformed displacement operators, deformed dual
states (with a peculiar temporal stability) and deformed T operators for NVCSs and
matrix NVCSs.

(v) The identification of a large class of NVCSs and their dual counterparts (to be classified)
on the basis of the operator ordering occurring in the construction.
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(vi) The determination of a new class of S3 NVCSs still defined in the full Hamiltonian Hilbert
space by assigning a new angle to the k-first states.

This paper is organized as follows. Section 2 recalls, in brief, considerations and the
Hilbert space structure for classes of spin–orbit models. A quick review of the NVCSs
associated with this Hilbert space is also given. Section 3 is devoted to the Hilbert space
reorganization and to the definition of ladder operators. Sections 4–6 deal with the construction
of a family of Gazeau–Klauder NVCSs defined by the action of the annihilation operator
and constituting a generalization of anterior NVCSs of spin–orbit models. Generalized
displacement operators, dual states and associated T operators are also treated therein. A
different family of S3 NVCSs is investigated in section 7. A conclusion is given in section 8
and an appendix yields useful relations concerning (p, q)-deformed exponential functions.

2. Nonlinear vector coherent states of spin–orbit models: a quick review

In this section, a rapid overview of previous results on canonical and NVCSs drawn from
[10, 11] is given. We aim at generalizing these results in the remaining sections.

As a matter of clarity, let us briefly recall that the bosonic algebra with parameter ε = ±
is generated by the Heisenberg operators a− := a and a+ := a† so that aε is well defined and
a−ε denotes its adjoint. The Heisenberg–Fock algebra then reads off [aε, a−ε] = −ε. For
any k ∈ N, one defines aεk := (aε)k . These operators act on the Fock representation space
F = {|n〉, n ∈ N} in the usual manner. We have, by a simple recurrence, for any k ∈ N,

aεk|n〉 =

⎧⎪⎨⎪⎩
(

(n + εk)!

n!

)ε/2

|n + εk〉, if ε = +, n � 0 or ε = −, n � k

0, if ε = −, n < k.

(6)

Given a function g = g(N), by action on the representation space, the following ε-
commutation rules hold

aεg(N) = g(N − ε)aε, aεkg(N) = g(N − εk)aεk, k ∈ N. (7)

Let f = f (N) be a fixed nonvanishing operator. Then, we define A− := a−f (N) and
A+ := f (N)a+. Hence, the notations such that Aε and, for k ∈ N, Aεk := (Aε)k make sense.
One expands Aεk as

Aεk =
(

f (N)!

f (N − εk)!

)ε

aεk = aεk

(
f (N + εk)!

f (N)!

)ε

, (8)

where the formal operator f (N)! acts by representation as f (N)!|n〉 = f (n)!|n〉 with
f (n)! := f (n)(f (n − 1)!) and by convention f (0)! = 1. Similarly to (7), the identity
Aεkg(N) = g(N − εk)Aεk is true.

The f -deformed oscillator algebra of Jannussis et al [24] defined by

A− = af (N), A+ = f (N)a†, {N} := A+A− = Nf 2(N),

[A−, A+] = (N + 1)f 2(N + 1) − Nf 2(N) = {N + 1} − {N} (9)

can be represented onto the Fock Hilbert space F as follows:

A−|0〉 = 0, A−|n〉 =
√

{n}|n − 1〉,
A+|n〉 =

√
{n + 1}|n + 1〉, {N}|n〉 = {n}|n〉,

(10)

where the deformed number denoted by the symbol {n} := nf 2(n) is usually called the f -basic
number. One defines {0} := limn→0 nf 2(n) and the generalized factorial {n}! := {n}({n−1}!)
with {0}! = 1 by convention.
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Given the Hamiltonian (5), its energy spectrum can be worked out by the usual tangent
technique or by the quasideterminant approach [32]. The Hamiltonian Hilbert space V can be
described by a direct sum of a finite set of one-dimensional complex spaces Vq generated by
the orthonormalized states |E∗

q 〉, q = 0, 1, . . . , k −1, k � 1 and infinite-dimensional complex

space V spanned by two towers of orthonormalized states
∣∣E±

n

〉
, n ∈ N such that n + kε � 0.

Hence V = ⊕k−1
q=0Vq ⊕V and the reduced Hamiltonian (5) (omitting henceforth the low indices)

admits the spectral decomposition

Hred =
k−1∑
q=0

|E∗
q 〉E∗

q 〈E∗
q | +

∞∑
n=0,±

∣∣E±
ñ

〉
E±

ñ

〈
E±

ñ

∣∣, (11)

where ñ = n + nε
0, n

ε
0 := max(0,−kε), and, for 1 � q � k − 1,

E∗
q = 1

2 [(1 + ε − ε){q + 1} + (1 + ε + εκ){q}], |E∗
q 〉 = |q,−ε〉, (12)

while the eigenenergies appearing in the infinite sum are defined as

E({n}) = 1

2

[
ε

2
{n + kε + 1} +

1

2
(1 + ε + κ){n + kε} −

(
1 +

ε

2

)
{n + 1} − 1

2
(1 + ε − κ){n}

]
,

Q({n}) =
[
E2({n}) + |λ(n + kε)|2

( {n + kε}!
{n}!

)ε] 1
2

, (13)

E±
n = 1

2

[
ε

2
{n + kε + 1} +

1

2
(1 + ε + κ){n + kε} +

(
1 +

ε

2

)
{n + 1}

+
1

2
(1 + ε − κ){n}

]
± Q({n}). (14)

Given

sin ϑ({n}) = eiϕλ(n)

[
Q({n}) − E({n})

2Q({n})
] 1

2

, cos ϑ({n}) =
[
Q({n}) + E({n})

2Q({n})
] 1

2

, (15)

the eigenstates of the two towers can be expressed by∣∣E+
n

〉 = sin ϑ({n})|n, +〉 + cos ϑ({n})|n + kε,−〉, (16)∣∣E−
n

〉 = cos ϑ({n})|n, +〉 − sin ϑ({n})|n + kε,−〉, (17)

with n � k for ε = −. The notation X stands for the complex conjugate of the quantity X.
Note that �En = E+

n −E−
n = 2Q({n}) assigns the Zeeman spin splitting to the Rabi frequency

up to a constant.
Allowing the passage from one basis of V to another, the operators

U =
∞∑

n=0,±

∣∣E±
ñ

〉〈n,±|, U† =
∞∑

n=0,±
|n,±〉〈E±

ñ

∣∣ (18)

are mutually adjoint on V but nonunitary on V . We have the identities U†U = IV ,UU† =
IV ,UV = V,U†V = V and U†V = V . Therefore, the reduced Hamiltonian (11) can be
diagonalized in terms of

Hred = U†HredU =
∞∑

n=0,±
|n,±〉E±

ñ 〈n,±|, (19)

5
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UHredU† =
∞∑

n=0,±

∣∣E±
ñ

〉
E±

ñ

〈
E±

ñ

∣∣ = Hred −
k−1∑
q=0

|E∗
q 〉E∗

q 〈E∗
q |. (20)

The following operators are adjoint of one another on V:

M− =
∞∑

n=0,±
|n − 1,±〉K±({n})〈n,±|, M+ =

∞∑
n=0,±

|n + 1,±〉K±({n + 1})〈n,±|, (21)

with K±({n}) being the arbitrary complex functions of {n} such that K±({0}) = 0.
Reciprocally, the operators M− = UM−U† and M+ = UM+U† are mutually adjoint on
the subspace V and have lowering and raising actions within each of the towers, namely,

M−|E∗
q 〉 = 0, M+|E∗

q 〉 = 0, q = 0, 1, . . . , k − 1, (22)

M−∣∣E±
ñ

〉 = K±({n})∣∣E±
ñ−1

〉
, M+

∣∣E±
ñ

〉 = K±({n + 1})∣∣E±
ñ+1

〉
. (23)

The generalized annihilation operator eigenvalue problem

M−|z; τ±; θ, φ〉 = zQ̃V |z; τ±; θ, φ〉, (24)

Q̃V :=
k−1∑
q=0

|E∗
q 〉〈E∗

q | +
∞∑

n=0,±

∣∣E±
ñ

〉
h±

f (n)
〈
E±

ñ

∣∣, (25)

where the quantities h±
f (n) 
= 0 are such that h±

f (n) → 1 as f (N) → 1, should be
solved in order to define the (k, ε, κ, f )-VCS denoted by |z; τ±; θ, φ〉. The terminology
generalized is justified by the fact that the eigenvalue problem is stated here through generalized
deformed arbitrary structure functions K± and h±

f , incorporated in M− and Q̃V , respectively,
and encompasses known related eigenvalue problems [17] (the matrix eigenvalue problem
developed in the following includes the models in [1] (see also references therein)). As the
most simple instance, at the canonical limit limf (N)→1 Q̃V ≡ IV , the problem (24) exactly
reduces to a Barut–Girardello eigenvalue problem for VCSs. In addition, the parameters τ±
are introduced for the Gazeau–Klauder axiom of temporal stability, (θ, φ) parametrize the unit
vectors of the sphere S2 and also determine the vector feature of NVCSs |z; τ±; θ, φ〉.

The general form of the (k, ε, κ, f )-VCSs fulfilling all axioms of Gazeau–Klauder is
given by [11]

|z; τ±; θ, φ〉 = N +(|z|) cos θ

∞∑
n=0

zn

K0
+({n})!

(
h+

f (n − 1)!
)
h+

f (0) e−iω0τ+E+
ñ

∣∣E+
ñ

〉
+N−(|z|) eiφ sin θ

∞∑
n=0

zn

K0−({n})!
(
h−

f (n − 1)!
)
h−

f (0) e−iω0τ−E−
ñ

∣∣E−
ñ

〉
, (26)

N±(|z|) =
[ ∞∑

n=0

|z|2n(
K0±({n})!)2

((
h±

f (n − 1)!
)
h±

f (0)
)2

]−1/2

, (27)

where N±(|z|) are normalization factors, the real positive functions K0
±({n}) := |K±({n})|

and h±
f (n) are yet to be specified; K0

±({n})! := ∏n
k=1 K0

±({k}), h±
f (n − 1)! := ∏n−1

k=1 h±
f (k),

with, by convention, K0
±({0})! = 1, h±

f (0)! = 1 and h±
f (−1)! = (

h±
f (0)

)−1
. The convergence

radii of N±(|z|) are R± = limn→∞
(
K0

±({n})/h±
f (n − 1)

)
and depend on the choice of

6
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K0
±({n}) as well as on h±

f (n). Consequently, the NVCSs of this form live in the disc
|z| � R,R = min (R+, R−).

The heretofore developments also meet a matrix formulation. Given the 2 × 2 diagonal
matrix K({n}) := diag(K+({n}),K−({n})) and K({n}) its adjoint, the diagonal matrix
annihilation operator connected with (21) is

M− =
∞∑

n=0,±
K({n})|n − 1,±〉〈n,±|, (28)

and again M− = UM−U†. We translate the eigenvalue problem (24) equally as

M−|(z, w); τ±;±〉 = Z̃(z, w)Q̃V |(z, w); τ±;±〉, (29)

where Z̃(z, w) is a 2 × 2 matrix operator of the two complex variables (z, w), and ± is the
spin-vector dependence now replacing the S2 unit sphere vectors. Assuming that Z = U†Z̃U
is a complex constant matrix and defining QV := U†Q̃VU , we rephrase (29) into the diagonal
basis as

M−|Z; τ±;±〉 = ZQV |Z; τ±;±〉, |Z; τ±;±〉 = U†|(z, w); τ±;±〉, (30)

QV =
∞∑

n=0,±
hf (n)|n,±〉〈n,±|, hf (n) = diag

(
h+

f (n), h−
f (n)

)
.

Problem (30) is a matrix eigenvalue problem. A canonical class of these problems can be
exactly carried out if Z is in a normal or in a quaternionic matrix domain [1]. In the particular
instance of a nonlinear model, assuming also that Z = diag(z, w), the general Gazeau–Klauder
NVCS solution of the eigenvalue problem (30) is given by

|Z; τ±;±〉 = N(Z)

∞∑
n=0

R0(n) exp[−iω0τEñ]Zn|n,±〉, (31)

N(Z)−2 =
∞∑

n=0

(|z|2n
(
R0

+(n)
)2

+ |w|2n
(
R0

−(n)
)2)

, (32)

R0(n) = diag
(
R0

+(n), R0
−(n)

) = (K0({n})!)−1(hf (n − 1)!hf (0)), (33)

where N(Z) is the normalization factor, τ = diag(τ+, τ−) and Eñ = diag
(
E+

ñ , E−
ñ

)
.

Note that the convergence radii of series (32) are such that |z| � L+, |w| � L− and
L± = limn→∞ K0

±({n})/h±
f (n − 1).

Given in the form (26) or (31), the NVCSs still contain some undetermined quantities,
hence the name of general form of NVCSs. They have been built with respect to three over four
Gazeau–Klauder axioms: the continuity in labeling, the temporal stability, the normalizability.
It then remains the resolution of the identity. It turns out that explicit examples of deformation
of NVCSs in both forms have exact solutions to their Stieljes moment problem by further
constraining the operator algebra as [M−,M+] = IV , or by the action identity constraint [28]
in the case of the canonical limit only [10, 11]. Hence, generalized solvable NVCSs meeting
all requirements of Gazeau–Klauder have been successfully built from a deformed physical
model.

7



J. Phys. A: Math. Theor. 42 (2009) 295202 J Ben Geloun and M N Hounkonnou

3. Hamiltonian Hilbert space organization and ladder operators

From this section, we start our main new results dealing with an extension of the previous
analysis of (k, ε, κ, f )-VCSs by a prolongation of the annihilation operator M− onto the
finite-dimensional space generated by ⊕k−1

q=0Vq . A number of deformed displacements for
S2, matrix NVCSs and issues about deformed T operators will be addressed in the following
sections. The results of the remaining sections are totally dependent on the Hilbert space
organization that we set in this section. We mention that, albeit quantities and operators may
differ, same notations as in section 2 will be used hereafter.

Let us first redefine the eigenstates and eigenenergies as∣∣e−
n

〉 = |E∗
n〉, e−

n = E∗
n, n = 0, 1, . . . , k − 1, (34)∣∣e−

n

〉 = ∣∣E−
n−n−ε

0

〉
, e−

n = E−
n−n−ε

0
, n = k, k + 1, . . . , (35)∣∣e+

n

〉 = |E+
n+nε

0
〉, e+

n = E+
n+nε

0
, n = 0, 1, . . . , (36)

so that we obtain two new towers of states
∣∣e±

n

〉
, n = 0, 1, . . .. Note that the finite sequence

|E∗
n〉, n � k − 1, could also be added to the tower

∣∣e+
n

〉
without loss of generality.

The spectral decomposition of the Hamiltonian (11) appears in the simpler form

Hred =
∞∑

n=0,±

∣∣e±
n

〉
e±
n

〈
e±
n

∣∣. (37)

Next the passage operatorsU andU†, such thatU |n,±〉 = ∣∣e±
n

〉
andU†∣∣e±

n

〉 = |n,±〉, encounter
the expansion

U =
∞∑

n=0,±

∣∣e±
n

〉〈n,±|, U† =
∞∑

n=0,±
|n,±〉〈e±

n

∣∣. (38)

They come now as unitary operators on V since they satisfy

UV = V, U†V = V, U†U = IV = UU†. (39)

Therefore, the Hamiltonian Hred can be written in a diagonal form

Hred = U†HredU =
∞∑

n=0,±
|n,±〉e±

n 〈n,±|. (40)

Conversely, in contrast to (20), we have UHredU† = Hred. Thus, this notation improves the
understanding of the Hamiltonian Hilbert space with a basis

∣∣e±
n

〉
mapped onto the diagonal

basis |n,±〉 via a unitary operator U†.
Now, let us focus on the annihilation and creation operators. To begin with, consider the

diagonal and mutually adjoint operators

M− =
∞∑

n=0,±
|n − 1,±〉K±({n})〈n,±|, M+ =

∞∑
n=0,±

|n + 1,±〉K±({n + 1})〈n,±|, (41)

where again K±({n}) are some functions of the f -basic number {n} with initial value
K±({0}) = 0. Changing the basis, the corresponding operators

UM−U† = M− =
∞∑

n=0,±

∣∣e±
n−1

〉
K±({n})〈e±

n

∣∣, (42)

8
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UM+U† = M+ =
∞∑

n=0,±

∣∣e±
n+1

〉
K±({n + 1})〈e±

n

∣∣, (43)

with lowering and raising actions as, ∀ n ∈ N,

M−∣∣e±
n

〉 = K±({n})∣∣e±
n−1

〉
, M+

∣∣e±
n

〉 = K±({n + 1})∣∣e±
n+1

〉
, (44)

define mutually adjoint ladder operators on V .
In terms of the ‘old’ basis {|E∗

q 〉, q = 0, 1, . . . , k − 1} ∪ {∣∣E±
ñ

〉
, n = 0, 1, . . .

}
, we have

M−|E∗
0 〉 = 0, M+|E∗

0 〉 = K−({1})|E∗
1 〉, (45)

M−|E∗
q 〉 = K−({q})|E∗

q−1〉, M+|E∗
q 〉 = K−({q + 1})|E∗

q+1〉, q = 1, . . . , k − 2,

(46)

M−|E∗
k−1〉 = K−({k − 1})|E∗

k−2〉, M+|E∗
k−1〉 = K−({k})∣∣E−

0̃

〉
, (47)

M−∣∣E−
0̃

〉 = K−({k})|E∗
k−1〉, M+

∣∣E−
0̃

〉 = K−({1})∣∣E−
1̃

〉
(48)

M−∣∣E±
ñ

〉 = K±({n})∣∣E±
ñ−1

〉
, M+

∣∣E±
ñ

〉 = K±({n + 1})∣∣E±
ñ+1

〉
, n � 1, (49)

which are to be compared with (22) and (23). The action of the annihilation operator is
therefore ensured between the two parts of the Hilbert space ⊕k−1

q=0Vq and V by the operator
|E∗

k−1〉K−({k})〈E−
0̃

∣∣ (and its adjoint in the case of raising action). It could also be defined
over the type of prolongation of the annihilation operator using the mapping |E∗

0 〉〈E∗
k−1| and

entailing a kind of ‘cyclic’ annihilation operator onto ⊕k−1
q=0Vq . This type of annihilation

operator proves to be well defined for finite-dimensional Hilbert spaces [30, 31]. However,
restricted to that latter situation, some difficulties emerge in the construction of CSs as we
shall define it later.

Finally, we give the matrix entries of the annihilation operator M− (42) in the diagonal
basis {|n,±〉, n ∈ N}

M− =
k−1∑
q=0

|q − 1,−ε〉M−
−ε−ε({q})〈q,−ε| + |k − 1,−ε〉M−

−ε+({k})〈̃0, +|

+ |k − 1,−ε〉M−
−ε−({k})〈̃0 + kε,−| +

∞∑
n=0

|̃n, +〉M−
++({n})〈̃n + 1, +|

+
∞∑

n=0

|̃n, +〉M−
+−({n})〈̃n + kε + 1,−| +

∞∑
n=0

|̃n + kε − 1,−〉M−
−+({n})〈̃n, +|

+
∞∑

n=0

|̃n + kε − 1,−〉M−
−−({n})〈̃n + kε,−| (50)

where

M−
−ε−ε({0}) = 0, M−

−ε−ε({q}) = K−({q}), q = 1, . . . , k − 1,

M−
−ε+({k}) = K−({k}) cos ϑ({̃0}), M−

−ε−({k}) = −K−({k}) sin ϑ({̃0}),
M−

++({n}) = sin ϑ({̃n})sin ϑ({̃n + 1})K+({n + 1}) + cos ϑ({̃n}) cos ϑ({̃n + 1})K−({n + 1}),
M−

+−({n}) = sin ϑ({̃n}) cos ϑ({̃n + 1})K+({n + 1}) − cos ϑ({̃n}) sin ϑ({̃n + 1})K−({n + 1}),
M−

−+({n}) = cos ϑ({̃n − 1})sin ϑ({̃n})K+({n}) − sin ϑ({̃n − 1}) cos ϑ({̃n})K−({n}),
M−

−−({n}) = cos ϑ({̃n − 1}) cos ϑ({̃n})K+({n}) + sin ϑ({̃n − 1}) sin ϑ({̃n})K−({n}), (51)

9



J. Phys. A: Math. Theor. 42 (2009) 295202 J Ben Geloun and M N Hounkonnou

with M−
−+({0}) = 0 = M−

−−({0}), for K±(0) = 0. Taking the complex conjugate of
these expressions leads to the analog of these quantities connected with the raising operator.
The parameter functions K±({n}) again indicate the freedom in the choice of creation and
annihilation operators that we will restrict in order to allow the existence of NVCSs according
to a series of general axioms [27]. As was observed in [11], the current Hilbert space structure
and its organization do not depend on the quantization scheme. Thus, the above results remain
valid for the undeformed canonical situation recovered by setting {n} → n in all expressions.

4. Nonlinear vector coherent states

In this section, we construct classes of Gazeau–Klauder NVCSs using the annihilation operator
eigenvalue problem of forms (24) and (29) resolved now within the new Hilbert space
structure. The Hamiltonian expectation value and the Rabi oscillations for these states are
computed and exact solutions to their overcompleteness problem are given. The corresponding
matrix formulation, deformed displacement operators, dual NVCSs and T operators will be
consistently defined in the following sections.

4.1. Identifying NVCSs

We proceed to the construction of NVCSs with respect to the set of Gazeau–Klauder axioms
by solving the generalized eigenvalue problem

M−|z; τ±; θ, φ〉 = zQ̃V |z; τ±; θ, φ〉, (52)

Q̃V :=
∞∑

n=0,±

∣∣e±
n

〉
h±

f (n)
〈
e±
n

∣∣, (53)

where the parameters τ±, θ and φ are introduced below and the functions h±
f (n) have the same

properties as stated before. Assuming that the solution of the problem (52) is of the form

|z; τ±; θ, φ〉 =
∞∑

n=0,±
C±

n (z)
∣∣e±

n

〉
, (54)

where C±
n (z) are complex continuous functions of the complex variable z, and then substituting

(54) into (52), leads to the recurrence relation

∀ n ∈ N, C±
n+1(z)K±({n + 1}) = zh±

f (n)C±
n (z). (55)

A simple solution of this recurrence is

C±
n (z) = zn

K±({n})!
(
h±

f (n − 1)!
)
h±

f (0)C±
0 (z), n � 1, (56)

with C±
0 (z) being the arbitrary continuous complex functions of z. The sense of generalized

factorials remains as K±({n})! := ∏n
p=1 K±({p}), h±

f (n − 1)! = ∏n−1
p=1 h±

f (p) with, by
convention, K±({0})! = 1, h±

f (0)! = 1 and h±
f (−1)! = (h±

f (0))−1. Therefore, the expression
of C±

n (z) (56) is still correct for n � 0.
Temporal stability condition refers to the CS stability under time evolution operator

U(t) = exp(−iω0tHred). In other words, the CSs should transform into one another
under time translations. More subtle considerations about this notion can be found in
[8]. The latter axiom can be reached by introducing a phase ϕ±({n}) such as K±({n}) =
10
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exp[iϕ±({n})]K0
±({n}),K0

±({n}) being real positive quantities, and after imposing the relations,
for all n = 1, 2, . . .,

ϕ±({n}) = ω0τ±
[
e±
n − e±

n−1

]
, (57)

where τ± is a new parameter. One has to define C±
0 (z) = C±

0 (z) exp
[−iω0τ±e±

0

]
so that the

problem (52) gives the solution

|z; τ±; θ, φ〉 =
∞∑

n=0,±

zn

K0±({n})!
(
h±

f (n − 1)!
)
h±

f (0)C±
0 (z) e−iω0τ±e±

n

∣∣e±
n

〉
(58)

with the property

U(t)|z; τ±; θ, φ〉 = |z; τ± + t; θ, φ〉. (59)

At this stage, we mention that the construction adopted here to ensure the temporal stability
requirement is equivalent to the procedure given by Roknizadeh and Tavassoly [8] where an
evolution operator maps any generalized CS to a temporal stable one. We also point out the fact
that the anterior problems of a singular state associated with the eigenvalue z = 0 [10, 11, 17]
have been totally removed. For instance, in the case k = 1, i.e. the so-called Jaynes–Cummings
model, the states |E∗〉 and

∣∣E±
0

〉
share the same eigenvalue z = 0. However, the state |E∗〉 is

not included in the definition of the CSs; then a singularity breaks the Gazeau–Klauder axiom
of continuity of labeling in z for the eigenvalue problem (24). In the case of the k-multiphoton
model, k states violate the latter axiom. This difficulty is generally circumvented by the
simple claim that the vectors with eigenvalue z = 0 may be expressed as a combination of
the eigenstates

∣∣E+
nε

0

〉
and

∣∣E−
nε

0

〉
. Here such an issue is totally avoided due to the ‘continuous’

action of the annihilation operator, passing from the infinite towers to the finite-dimensional
part of the Hamiltonian Hilbert space.

Defining

C+
0 (z) = N +(|z|) cos θ, C−

0 (z) = N−(|z|) eiφ sin θ, (60)

introducing the S2 unit vector coordinates (θ, φ), and the functions

N±(|z|) =
[ ∞∑

n=0

|z|2n(
K0±({n})!)2

((
h±

f (n − 1)!
)
h±

f (0)
)2

]−1/2

(61)

of convergence radii R±

R± = lim
n→∞

[
K0

±({n})
h±

f (n − 1)

]
(62)

ensures the normalization axiom. Finally, the general (k, ε, κ, f )-VCS associated with the
generalized spin–orbit model (37) has the form

|z; τ±; θ, φ〉 = N +(|z|) cos θ

∞∑
n=0

zn

K0
+({n})!

(
h+

f (n − 1)!
)
h+

f (0) e−iω0τ+e+
n

∣∣e+
n

〉
+N−(|z|) eiφ sin θ

∞∑
n=0

zn

K0−({n})!
(
h−

f (n − 1)!
)
h−

f (0) e−iω0τ−e−
n

∣∣e−
n

〉
, (63)

with |z| � R,R = min(R+, R−); the positive functions K0
±({n}) and h±

f (n) are to be specified.
One notices the similar structure of NVCSs (63) and (26). However, these two classes of CSs
radically differ since they are not built onto the same Hilbert space.

11
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The overcompleteness condition is a necessary axiom that any family of CSs ought to
satisfy [1, 27, 28]. For the NVCSs (63), this condition can be formulated as

IV =
∞∑

n=0,±

∣∣e±
n

〉〈
e±
n

∣∣ =
∫

DR×S2
dμ(z; θ, φ)|z; τ±; θ, φ〉〈z; τ±; θ, φ|, (64)

with the SU(2) matrix-valued integration measure over DR × S2, dμ(z; θ, φ) admitting the
parametrization as

dμ(z; θ, φ) = d2z dθ sin θ dφ

{
W+(|z|)

∞∑
n=0

∣∣e+
n

〉〈
e+
n

∣∣ + W−(|z|)
∞∑

n=0

∣∣e−
n

〉〈
e−
n

∣∣} , (65)

where W±(|z|) are yet unknown real weight functions. A direct substitution in (64), using the
radial parametrization z = r exp(iϕ), so that d2z = r dr dϕ, where r ∈ [0, R) and ϕ ∈ [0, 2π [,
leads to the Stieljes moment problems

∀n ∈ N,

∫ R2

0
du unh±(u) =

(
K0

±({n})!)2((
h±

f (n − 1)!
)
h±

f (0)
)2 , (66)

where u = r2 and the functions h±(r2) are

h+(r2) = 4π2

3
|N +(r)|2W+(r), h−(r2) = 8π2

3
|N−(r)|2W−(r). (67)

Let us remark that the problems (66) have the same form of the Stieljes problems as was
developed in [11]. Consequently, the same techniques as found therein could be used in order
to determine a solvable and deformed resolution of the identity. Some explicit solutions will
be furnished later. Provided these answers, we may assume that there exists a wide class of
sets of (k, ε, κ, f )-VCSs fulfilling the Gazeau–Klauder axioms in a nonempty disk DR of C

distinguishable by specific choices of K0
±({n}) > 0 and h±

f (n), for instance.

4.2. Some expectation values and action-angle variables

We briefly give the expectation value of the Hamiltonian operator and discuss the atomic spin
time evolution average.

The Hamiltonian mean value measured in any state is given by

〈Hred〉 = |N +(|z|)|2 cos2 θ

∞∑
n=0

|z|2n(
K0

+({n})!)2

((
h+

f (n − 1)!
)
h+

f (0)
)2

e+
n

+ |N−(|z|)|2 sin2 θ

∞∑
n=0

|z|2n(
K0−({n})!)2

(
(h−

f (n − 1)!)h−
f (0)

)2
e−
n . (68)

The average spin time evolution (atomic inversion in quantum optics) is defined by 〈σ3(t)〉 =
〈U−1(t)σ3U(t)〉, with the time evolution operator U(t) = exp(−iω0tHred). We get a similar
atomic inversion as in [11] with Rabi oscillation currently of the form

�n(t) = ω0
[
(t + τ+)e

+
n − (t + τ−)e−

n

]
+ φ − ϕλ(n)

= ω0�ent + ω0
[
τ+e

+
n − τ−e−

n

]
+ φ − ϕλ(n) (69)

showing an explicit time dependence due to the mixed-spin matrix elements when λ({N}) 
= 0
(in the limit λ({N}) → 0, oscillations collapse) and consisting only of Rabi oscillations as
expected. This is a general property for quantum optics system prepared in a CS of the
radiation field [18].

12
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Klauder’s argument [28] that the stability of CSs under time evolution could be translated
by defining continuous parameters, so-called canonical action-angle variables (J, τ ), should be
recast for the purpose of VCSs, as defining canonically conjugate and continuous coordinates
(J�, τ�), � standing for the VCS index. Explicitly, if the Hamiltonian expectation value in any
state can be written as

〈Hred〉 = J+ω+ + J−ω− =
∑
±

J±ω±, (70)

where ω± are some constant factors, we can identify through the action-angle variational
principle ∫

dt
∑
±

[
dτ±
dt

J± − ω±J±

]
←→

∫
dt

[〈
i

ω0

d

dt

〉
− 〈Hred〉

]
(71)

the following Hamiltonian equations:

dτ±
dt

= ∂〈Hred〉
∂J±

= ω±,
dJ±
dt

= −∂〈Hred〉
∂τ±

= 0. (72)

Then any shift of time τ± → τ± + t implies that ω± = 1 and, as a corollary, (72) involves the
canonical action coordinates conjugated to τ± of the form

J+ = |N +(|z|)|2 cos2 θ

∞∑
n=0

|z|2n(
K0

+({n})!)2

((
h+

f (n − 1)!
)
h+

f (0)
)2

e+
n,

J− = |N−(|z|)|2 sin2 θ

∞∑
n=0

|z|2n(
K0−({n})!)2

((
h−

f (n − 1)!
)
h−

f (0)
)2

e−
n .

(73)

4.3. Explicit solutions

Here, we sketch the way to obtain classes of solutions of the moment problems (66) either in
canonical or in deformed situations.

A simple class of solutions. We note that the general algebraic restriction such that the ladder
operators M− and M+ obey a f -deformed oscillator algebra on V , namely

M−M+ − M+M− =
∞∑

n=0,±

∣∣e±
n

〉
({n + 1} − {n})〈e±

n

∣∣, (74)

implies that K0
±({n}) = √{n} with initial conditions K0

±({0}) = 0. The normalization series
(61) prove to be as N±(|z|) = e−|z|2/2 with infinite convergence radii if one further sets(
h±

f (n)
)2 = (f (n + 1))2. The subsequent moment problems (66) reduce to∫ ∞

0
duunh±(u) = n!, n = 0, 1, 2, . . . , (75)

with solutions h±(u) = e−u and associated weight factors as W+ (|z|) = 3/(4π2) and
W− (|z|) = 3/(8π2).

Hence, any family of (k, ε, κ, f )-VCSs possesses at least one exact solution to their
resolution of identity. Canonical VCSs can be determined in the same way, with a
constraint similar to (74), i.e. the ladder operator should obey an ordinary Fock–Heisenberg
algebra.

A class of canonical solutions. The action identity constraint [28] also bears a class of solutions
to the resolution of the identity equation only for the canonical case (f (N) → 1, κ → 1); a
huge simplification occurring in this case. Consider the requirements

13
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J+ = cos2 θ
(|z|2 + e+

0

)
, J− = sin2 θ

(|z|2 + e−
0

)
. (76)

These statements govern the next relations, under a supplementary condition of a bounded
from below energy spectrum such that e±

n − e±
0 � 0,

K0
±(n) =

√
e±
n − e±

0 . (77)

The spin–orbit decoupled model with λ(N) = 0 implies

∀ n ∈ N, e±
n − e±

0 = (1 + ε)n. (78)

One concludes that K0
±(n) = √

(1 + ε)n and K0
±(0) = 0. The normalization factors of these

nonlinear VCSs are N±(|z|)−2 = exp[|z|2/(1 + ε)] of infinite convergence radii. The moment
problem related to the resolution of the identity of such states can be put in the form∫ ∞

0
duunh±(u) = (1 + ε)nn! (79)

Changing variables as u → u/(1+ε), it is not difficult to obtain h±(u) = exp[−u/(1+ε)]/(1+
ε) and to deduce the measure weight factors

W+(|z|) = 3

4π2(1 + ε)
, W−(|z|) = 3

8π2(1 + ε)
. (80)

Solutions as (p, q) deformations. We can also find classes of NVCSs with exact solutions to
their moment problem in (p, q;α, β, �)-Burban deformed theory [25], in which case

f (N) =
√

p−αN−β − qαN+β

N(p−� − q�)
, h±

f (N) =
(

qμ

pν

)N √
l±(p, q) (81)

with 0 < q < 1, p > 1, (pq)α < 1, α � 0, β, �, μ and ν being real parameters,
and the positive real-valued functions l±(p, q) are such that lim(p,q)→(1+,1−) h±

f (N) = 1.
Here, exact solutions to (66) can be expressed for β = 0 and by fixing the constant
parameters (μ, ν, p, q, α) so that the convergence radii of norm series are nonvanishing.
The problems (66) turn to (p, q;α, 0, �)-Ramanujan integrals of which solutions can be
written as deformed generalized exponential (see [11] and a summary in the appendix).
Nevertheless, there is a more general formulation recovering the (p, q;α, β, �)-theory and still
allowing the existence of a class solution that we propose to investigate. The multiparameter
(p, q;α, β, �; ρ, ξ ;φ1, φ2) quantum deformation is an extension of the (p, q; ρ, ξ ;φ1, φ2)-
deformation as settled in [26], introducing the new indices α, β and � as found in (81). The
deformation function in such a theory is

f (N) =
√(

pρ

qξ

)N
p−αN−βφ1(p, q) − qαN+βφ2(p, q)

N(p−� − q�)
, (82)

with the set of conditions over parameters

0 < φ1(p, q) < φ2(p, q),
φ1(p, q)

φ2(p, q)
= (pq)k0 , k0 ∈ N, (83)

(pq)α < 1, α � 0, p > 1, 0 < q < 1, (β, �) ∈ R2, (84)

which ensures the convergence of the upcoming infinite sums and products (see also [26] for
relevant reductions). As a matter of continuity, φi(p, q), i = 1, 2, could be taken as continuous
functions of the two parameters (p, q). As argued in [26], recovered for (α, β, �) = (1, 0, 1),

14
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the integer k0 causes the existence of two ground states (k0 = 0, k0) of the generalized
harmonic oscillator Hamiltonian built in this framework.

Coming back to our problem, one imposes the next constraint on the algebra of ladder
operators

q
ξ

0

p
ρ

0

M−M+ − q�
0M+M− =

∞∑
n=0,±

∣∣e±
n

〉p(ρ−α)N−β

0

q
ξN

0

φ1(p0, q0)
〈
e±
n

∣∣ (85)

q
ξ

0

p
ρ

0

M−M+ − p−�
0 M+M− =

∞∑
n=0,±

∣∣e±
n

〉 p
ρN

0

q
(ξ−α)N−β

0

φ2(p0, q0)
〈
e±
n

∣∣, (86)

with (p0, q0) being the new deformation parameters such that p0 > 1, 0 < q0 < 1, (p0q0)
α <

1. A direct algebra shows that

q
ξ

0

p
ρ

0

(
K0

±([n + 1]0)
)2 − q�

0

(
K0

±([n]0)
)2 = p

(ρ−α)n−β

0

q
ξn

0

φ1(p0, q0), (87)

q
ξ

0

p
ρ

0

(
K0

±([n + 1]0)
)2 − p−�

0

(
K0

±([n]0)
)2 = p

ρn

0

q
(ξ−α)n−β

0

φ2(p0, q0), (88)

where

[n]0 = [n](p0,q0) := p
ρn

0

q
ξn

0

(
p

−αn−β

0 φ1(p0, q0) − q
αn+β

0 φ2(p0, q0)
)(

p−�
0 − q�

0

) (89)

corresponds to the basic integer of the theory. The solutions to recurrence relations (87) and
(88) are

K0
±([n]0) = √

[n](p0,q0) (90)

with initial values K0
±([0]0) = [0]0. Note that the symmetry exchange

(
p0 ↔ q−1

0

)
, (φ1 ↔ φ2)

and (ρ ↔ ξ) makes compatible the solutions of these recurrence relations. From the
annihilation operator action, one should set K0

±([0]0) = [0]0 = 0 and find a restriction
through

p
−β

0 φ1(p0, q0) − q
β

0 φ2(p0, q0) = 0 ⇐⇒ β = k0. (91)

This latter relation indicates that the annihilation operator action on the ground state could
vanish only when a Burban deformed theory coincides with a (p, q; ρ, ξ ;φ1, φ2)-theory up
to a deformation function, namely

F(N) =
√(

pρ

qξ

)N

p−βφ1(p, q)
(p−� − q�)

(p−1 − q1)
. (92)

Moreover, in the former study [11], the cancellation of K0
±([0]0) = [0]0 = 0 could be realized

only for a linear theory β = 0. At this stage, noting that k0 = β is still a free parameter, the
below solutions prove to be more general than those obtained in [11].

The norm series of the NVCSs become, using the expression of h±
f (N) (81),

|N±(|z|)|−2 =
∞∑

n=0

|z|2n

[n]0!

(
qμ

pν

)n(n−1)

(l±(p, q))n, (93)
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and have the radius of convergence

R± = lim
n→∞

[(
qμ

pν

)−2n [n]0

l±(p, q)

]1/2

(94)

= lim
n→∞

[(
p

ρ−α

0 p2νq−2μq
−ξ

0

)n
p

−β

0 φ1(p, q)
1 − (p0q0)

αn

l±(p, q)
(
p−�

0 − q�
0

)]1/2

. (95)

Assuming that p
ρ−α

0 p2νq−2μq
−ξ

0 > 1, R± are infinite. The moment problem (66) can be
written as, for all n ∈ N,∫ ∞

0
du unh±(u) =

(
qμ

pν

)−n(n−1)

(l±(p, q))−n[n]0!

= q
−ξ n(n+1)

2
0 q−μn(n−1)p

ρ n(n+1)

2 −βn

0 p−νn(n−1)�(p, q)n[pα, qα;pα, qα]n, (96)

�(p, q) = φ1(p, q)
(
p−�

0 − q�
0

)−1
(l±(p, q))−1. (97)

We now choose an appropriate set of parameters as

p0 = p, q0 = q,
ξ

2
+ μ = α

2
,

ρ

2
+ ν = 0, (98)

so that p
ρ−α

0 p2νq−2μq
−ξ

0 = (pq)−α > 1, implying infinite radii of convergence for the norm
series. Afterward, making use of the (pα, qα)-extension of the Ramanujan integral, we derive
the moment function (generalized exponential functions can be found in the appendix)

h±(|z|2) = �−1(p, q)
1

log(1/(pq)α)
e(pα,qα)(−|z|2�−1(p, q)p−α/2),

�(p, q) = qα−ξp−2ν−β�(p, q).

(99)

The norm series can be inferred as,
(
K0

±([n])
)2 = [n],

|N±(|z|)|−2 = E (1/2,0)

(pα,qα)(|z|2qξ−α/2pβ+2νφ−1
1 (p, q)l±(p, q)(p−� − q�)), (100)

and one can easily deduce the weight functions W±(|z|) from (67). These weights generalize
the measure as obtained in [11] with a freedom parametrized by the deformation functions
φ1(p, q), and the new extra parameters qξ and pβ+2ν . In order to get previous results of [11],
one has to set ξ = 0 = β + 2ν and φ1(p, q) = 1 in which case φ2(p, q) corresponds to the
monomial function (pq)−β .

In summary, NVCSs associated with the nonlinear spin–orbit Hamiltonian are
characterized by a unit vector of the sphere S2 determined by coordinates θ and φ. Some
appropriate constraints should be set in order that they could fulfill all the axioms of Gazeau–
Klauder, namely continuity in the parameter z ∈ C, temporal stability through a shift of
the real parameters τ± → τ± + t and the overcompleteness property as a resolution of the
Hilbert space V . They distinguish from one another by different real positive factors K0

±({n})
parametrizing the freedom afforded by the annihilation operator action. An exact resolution
of the unity over the total Hilbert space can be derived after specifying the remaining freedom.

5. Matrix formulation

The S2 NVCSs have a natural extension as matrix NVCSs. In [11], we considered diagonal
and quaternionic matrix domains. Here, we enlarge the study to normal (including diagonal
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complex matrices) and quaternionic matrix domains taking, of course, into account the new
Hilbert space framework.

To proceed, we write the diagonal matrix annihilation operator associated with (41) as

M− =
∞∑

n=0,±
|n − 1〉〈n| ⊗ K({n})|±〉〈±|, K({n}) = diag(K+({n}),K−({n})), (101)

where we assume that K({n}) is in diagonal form. By similarity, we project the annihilation
operator onto the basis

∣∣e±
n

〉
as

M− = UM−U† =
∞∑

n=0,±
K({n})∣∣e±

n−1

〉〈
e±
n

∣∣. (102)

The same eigenvalue problem as in (29) is found as

M−|(z, w); τ±;±〉 = Z̃(z, w)Q̃V |(z, w); τ±;±〉, (103)

with the same shape for operators Z̃(z, w) and Q̃V . Still assuming that Z = U†Z̃U is a complex
constant matrix, we define QV := U†Q̃VU , so that (103) can be put into the form

M−|Z; τ±;±〉 = ZQV |Z; τ±;±〉, |Z; τ±;±〉 = U†|(z, w); τ±;±〉. (104)

Let us assume that QV admits the expansion

QU
V =

∞∑
n=0,±

|n〉〈n| ⊗ Uhf (n)U†|±〉〈±|, hf (n) = diag
(
h+

f (n), h−
f (n)

)
,

with U being an element of the unitary group U(2) or an element of SU(2). Let us fix Z as a
normal matrix and Zquat as a quaternionic matrix, i.e., they satisfy

Z†Z = ZZ†, Z = V diag(z, w)V †, V ∈ U(2), (105)

Zquat = Udiag(z, z̄)U †, U ∈ SU(2), (106)

U = uφ1uθuφ2 , uθ =
(

cos θ
2 i sin θ

2
i sin θ

2 cos θ
2

)
, uφi

=
(

ei φi
2 0

0 e−i φi
2

)
, (107)

for θ ∈ [0, π ] and φi ∈ ]0, 2π ]. Therefore, the operators

Zf := ZQV
V =

∞∑
n=0,±

|n〉〈n| ⊗ V Zdiaghf (n)V †|±〉〈±|, (108)

Zdiag := diag(z, w), (109)

Zquat,f := ZquatQ
U
V =

∞∑
n=0,±

|n〉〈n| ⊗ UZqdiaghf (n)U †|±〉〈±|, (110)

Zqdiag := diag(z, z̄) (111)

satisfy the equations

M−
V |Z; τ±;±〉 = Zf |Z; τ±;±〉, (112)

M−
U |Zquat; τ±;±〉 = Zquat,f |Zquat; τ±;±〉, (113)
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obtained by substituting in (104), QV by QU
V , for U = V,U , and using the new group dependent

annihilation operators

M−
U

=
∞∑

n=0,±
|n − 1〉〈n| ⊗ UK({n})U†|±〉〈±|, U = V,U. (114)

The procedure as applied in section 4.1 can be used for obtaining the general solutions
of the eigenvalue problem (112) and (113) with all Gazeau–Klauder properties. We have the
general form of Gazeau–Klauder NVCSs:

• For normal matrices

|Z; τ±;±〉 = N(Z)

∞∑
n=0

|n〉 ⊗ V (K({n})!)−1V †Zn
f |±〉 (115)

= N(Z)

∞∑
n=0

|n〉 ⊗ V R0(n) exp[−iω0τen]Zn
diagV

†|±〉, (116)

N(Z)−2 =
∞∑

n=0

Tr[V |R0(n)|2 diag(|z|2n, |w|2n)V †]

=
∞∑

n=0

(|z|2n|R0
+(n)|2 + |w|2n|R0

−(n)|2), (117)

R0(n) = diag
(
R0

+(n), R0
−(n)

) = (K0({n})!)−1(hf (n − 1)!hf (0)), (118)

where K0({n}) = diag
(
K0

+({n}),K0
−({n})),K0

±({n}) = |K±({n})|, N(Z) is the
normalization factor, τ = diag(τ+, τ−) and en = diag

(
e+
n, e

−
n

)
. Note that the

convergence radii of series (117) are such that |z| � L+, |w| � L− and L± =
limn→∞ K0

±({n})/|h±f (n − 1)|.
• For quaternion matrices

|Zquat; τ±;±〉 = N(Zquat)

∞∑
n=0

|n〉 ⊗ U(K({n})!)−1U †Zn
quat,f |±〉 (119)

= N(Zquat)

∞∑
n=0

|n〉 ⊗ UR0(n) exp[−iω0τen]Zn
qdiagU

†|±〉, (120)

N(Zquat)
−2 =

∞∑
n=0

Tr[U |R0(n)|2|z|2nI2U
†]

=
∞∑

n=0

|z|2n
(∣∣R0

+(n)
∣∣2 +

∣∣R0
−(n)

∣∣2), (121)

with the norm series convergence radius

L = lim
n→∞

[ ∣∣R0
+(n)

∣∣2 +
∣∣R0

−(n)
∣∣2∣∣R0

+(n + 1)
∣∣2 +

∣∣R0−(n + 1)
∣∣2

] 1
2

. (122)

The NVCSs (116) and (120) are continuous, normalized according to the definition∑
±

〈Z; τ±;±|Z; τ±;±〉 = 1, Z = Z, Zquat, (123)
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and stable under the time evolution operator

UU(t) = exp[−iω0tUHredU†] = U exp[−iω0tH
red]U†, U = V,U, (124)

i.e.

UU(t)|Z; τ±;±〉 = |Z; τ± + t;±〉. (125)

The action identity axiom could also be inferred by assigning the action variables to

JU
± = 〈Z; τ±;±|UHredU†|Z; τ±;±〉, U = V,U. (126)

To recover the original NVCSs over the basis
∣∣e±

n

〉
, we derive the state (104) as follows:

|(z, w); τ±;±〉Z = UUU†|Z; τ±;±〉 (127)

= N(Z)

∞∑
n=0

U
∣∣e±

n

〉
R±

0 (n) exp
[−iω0τ±e±

n

]
Zn

±U
†
±, (128)

with Z± = 〈±|Zdiag|±〉 and U
†
± = 〈±|U†|±〉, so that the operator Z̃ has the form

Z̃Z =
∞∑

n=0,±
U
∣∣e±

n

〉
Z±

〈
e±
n

∣∣U†. (129)

One notes that the normalization factor of |(z, w); τ±;±〉 remains the same as that of
|Z; τ±;±〉 as expected from any unitary transformation.

First, let us treat the resolution of the identity related to the normal matrix domain. The
overcompleteness relation of the normal matrix NVCSs is given by

IV =
∑
±

∫
D

dμ(Z)|Z; τ±;±〉〈Z; τ±;±|, (130)

where the domain D and the measure dμ(Z) are to be defined. Considering the parametrization
of the variable Z = V diag(z, w)V † as

z = r+ eiθ+ , w = r− eiθ− , r± ∈ [0, L±), θ± ∈ [0, 2π [, (131)

the domain of integration D is given by

D = [0, L+) × [0, L−) × {[0, 2π [}2 × U(2), (132)

where one should include the Lie group U(2). Therefore, the measure dμ(Z) is of the form

dμ(Z) = N(Z)−2W+(r+)W−(r−)r+r− dr+ dr− dθ+ dθ− d�U(2)(V ). (133)

Here d�U(2)(V ) is the invariant Haar measure over U(2) normalized to 1 and W±(r±) are
weight factors to be fixed later.

After integration over the angle variables θ±, the identity (130) involves the next integral
over the group U(2),∫

U(2)

d�U(2)(V )V
((

R0
+(n)

)2
r2n

+ |+〉〈+| +
(
R0

−(n)
)2

r2n
− |−〉〈−|)V †

= 1

2
r2n

+

(
R0(n)+

)2
+

1

2
r2n
−

(
R0(n)−

)2
, (134)

where we have used the orthogonality condition on a compact group [1]∫
U(2)

d�U(2)(V )V |±〉〈±|V † = 1

2
I2. (135)
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Here {|±〉} plays the role of the canonical basis of C2. We end with the moment problems∫ L2
±

0
du± un

±h±(u±) = (
K0

±({n})!)2/
(h±f (n − 1)!h±f (0))2, (136)

where u± = r2
± and the functions h±(u±) = πW±(u±).

Solution to (136) could be found along the lines of section 4.3 for canonical and
deformed situations. We give here the simplest solution obtained by stressing the ladder
operators to satisfy [M−, M+] = ({N + 1} − {N})I2, implying K±({n}) = {n} and fixing
(h±f (n))2 = (f (n+ 1))2. The norm series (117) are N(Z)−2 = (

er2
+ +er2

−
)

such that L± = ∞.
One can solve (136) and find h±(u±) = e−u± from which the weight factors W±(u±) and the
measure

dμ(Z) = 1

π2

(
e−r2

+ + e−r2
−
)
r+r−dr+dr− dθ+ dθ− d�U(2)(V ) (137)

are deduced. For other deformed theories, one can also show that these moment problems
find solutions using appropriate deformed exponential functions. Finally, the correct measure
for the anterior Z̃-NVCSs can easily be obtained by using the fact that dμ(Z) is an invariant
measure.

Concerning the quaternionic matrix domain, a similar treatment can be applied. However,
we use a different technique in order to avoid the integration over the Lie group. The measure
will be endowed with the following parametrization of the quaternions Zquat = U diag(z, z̄)U †

as, using direct expansion of (106),

Zquat = r(cos ξI2 + i sin ξσ ), σ =
(

cos θ eiφ sin θ

e−iφ sin θ − cos θ

)
, (138)

where

z = r eiξ , r ∈ [0, L), ξ ∈ [0, 2π [, θ ∈ [0, π [, φ ∈ [0, 2π [. (139)

Note that the Lie group SU(2) dependence has been traded for a S2 unit vector indices. It is
then crucial to observe that, since σ 2 = I2,

Zquat = r exp[iξσ ], (140)

thence any power of Zquat can easily be deduced and (Zquat)
† = r exp[−iξσ ].

The domain of integration D is nothing but

D = [0, L) × [0, 2π [×S2 (141)

for which the measure dμ(Zquat) appears as

dμ(Zquat) = N(Z)−2W(r)r dr dξ dμS2(θ, φ), dμS2(θ, φ) = 1

4π
sin θ dθ dφ (142)

with W(r) being a weight factor to be determined. A straightforward algebra induces the
moment problem∫ L2

0
du unh(u) = (

K0
±({n})!)2/

(h±f (n − 1)!h±f (0))2, (143)

where u = r2 and the functions h(u) = πW(u). Again, we can single out a solution of the
problem (143) by constraining the function

(
h0

+f (n)
)2 = (

h0
−f (n)

)2 = (f (n + 1))2, and the
algebra to be such that [M−, M+] = ({N + 1} − {N})I2 implying K±({n}) = {n}. Indeed,
we find that the norm series (121) is N(Zquat)

−2 = (
2er2)

with convergence radius L = ∞.
Therefore, the solution of (143) as h(u) = e−u corresponds to a measure

dμ(Zquat) = 1

2π2
r dr dξ dθ dφ dμS2 . (144)

Measures (137) and (144) have been discussed in [11, 33]. Finally, the same comments about
solvable deformed theories as over normal NVCSs remain true also for quaternion NVCSs.
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6. Deformed displacement operators, dual states and T operators

Unitary displacement operators for VCSs over the matrix domain have a well-defined sense
via the tensor product of matrix and Hilbert spaces [1]. Here, we need to define deformed
versions of these operators that still generate the S2 or matrix NVCSs. A step forward is to
consider the displacement operators in the context of NCSs [29] which are mainly exploited
in deformed quantum optics [5–7]. In [9], deformed inverse bosonic operators are used and,
from these, their dual NCSs are defined. The purpose is to extend these operators to deformed
versions of displacement operators and to investigate how they generate S2 and matrix NVCSs.

6.1. S2-displacement operators

Consider the annihilation operator

M− =
∞∑

n=0,±

∣∣e±
n−1

〉
K±({n})〈e±

n

∣∣, (145)

where K±({n}) are free functions of {n}. Let us define a new operator

B+ =
∞∑

n=0,±

∣∣e±
n+1

〉
G±({n + 1})〈e±

n

∣∣, (146)

where G±({n}) are new functions of number {n} and impose the condition

[M−,B+] = IV . (147)

Therefore, a direct evaluation of (147) proves that the pair (K±({n}),G±({n})) should satisfy

K±({1})G±({1}) = 1, (148)

K±({p + 1})G±({p + 1}) − K±({p})G±({p}) = 1, ∀ p � 1. (149)

A simple solution to this problem is

G±({0}) = 0, G±({p}) = p(K±({p}))−1, ∀p � 1. (150)

Moreover, one can check that[
Q̃

−1
V M−,B+Q̃V

] = IV , Q̃
−1
V =

∞∑
n=0,±

∣∣e±
n

〉(
h±

f (n)
)−1〈

e±
n

∣∣. (151)

We are immediately in a position to define a displacement operator for S2 NVCS theory by
introducing

Df = ezB+Q̃V−z̄Q̃
−1
V M−

(152)

and the NVCSs can be rebuilt from the action of operator Df onto the ground states as

|z; τ±; θ, φ〉 = Df

{
e

1
2 |z|2[N +(|z|) cos θ e−iωτ+e+

0
∣∣e+

0

〉
+ N−(|z|) eiφ sin θ e−iωτ−e−

0
∣∣e−

0

〉]}
. (153)

Of course, the limit f (N) → 1 implies that Df converges to a kind of ordinary displacement
operator eza†−z̄a of usual CSs recovered for K(n) = √

n.
Another class of NCVSs, so-called ‘dual’ NVCSs, could be introduced by noting the fact

that

[M+,B−] = IV ,
[
Q̃VB−,M+Q̃

−1
V

] = IV , B− = (B+)† (154)
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and by defining a new displacement operator of the form

D′
f = ezM+Q̃

−1
V −z̄Q̃VB−

. (155)

Applying the latter on ground states, we get the set of dual NVCSs as

|z; τ±; θ, φ〉′ = D′
f

{
e

1
2 |z|2[N ′+(|z|) cos θ e+iωτ+e+

0
∣∣e+

0

〉
+ N ′−(|z|) eiφ sin θ e+iωτ−e−

0
∣∣e−

0

〉]}
(156)

where one needs to introduce new normalization factors

N ′±(|z|) =
[ ∞∑

n=0

|z|2n

(n!)2

(
K0

±({n})!)2(
(h±

f (n − 1)!)h±
f (0)

)2

]−1/2

(157)

of convergence radii R′
±

R′
± = lim

n→∞

[
nh±

f (n − 1)

K0±({n})

]
. (158)

Noting the change of phase +iωτ±e±
0 (156), a peculiar notion of evolution is encoded in the

dual state definition. We will discuss this below according to the matrix formulation.
One could ask if the NVCSs and their analog dual states could be simultaneously solvable

in the sense that they give an exact resolution of the identity. Let us consider the specific
instance when K0

±({n}) = √{n} and h±
f (n) = sf (n + 1), s = ±, since this case proves to be

solvable for NVCSs (see section 4.3). Therefore, the resolution of the identity for dual NVCSs
reduces to the moment problem (75), for s = +, R′ = limn→∞

√
n = ∞ and then getting

h±(u±) = e−u± . These solutions consist of those of any set of CSs coinciding with their dual
counterpart in the absence of deformation, i.e., f (N) → 1 [7]. For other deformed theories,
any answer could be given without making a careful analysis. However, disregarding the prime
NVCSs, we can always find an exact resolution of the moment problem for (p, q) deformation
of the dual NVCSs. Indeed, one has to switch the role played by K({n}) and h±

f (n − 1)

along the lines of the resolution in section 4.3 and then totally finds similar solutions. Another
remarkable feature introduced by operator QV is the large number of possible displacement
operators. We note that, since on the one hand QV and M±, and on the other hand QV and B±

are noncommuting operators, it becomes possible to define, by any order of composition, the
displacement operators. Adding now Q−1

V into the game, the set of significant operators is even

more large (for instance, note that
[
B−Q̃V , Q̃

−1
V M+

] = IV ). The corresponding displacement
operators obviously generate different sets of NVCSs for a particular order and by coupling
QV or Q−1

V to M± or B±. To study all these NVCSs is, of course, an interesting issue that
we will postpone to a forthcoming work consisting in the classification of these families using
different criteria (for instance, exact solution of their moment problem and which of them are
simultaneously solvable, or by sharper analytical properties, etc). Finally, one remarks that,
in deformed theory, an initial family of NVCSs could have many solvable ‘dual’ counterparts.

6.2. Matrix displacement operators

The same notion of deformed displacement operators also makes sense in a matrix theory.
In this paragraph, we only focus on normal matrix NVCSs; the case of quaternionic domain
could easily be inferred. Consider the matrix annihilation operator as given by (101) and the
operator (same notations as in section 5 are used)

B+
V =

∞∑
n=0,±

|n + 1〉〈n| ⊗ V G({n + 1})V †|±〉〈±|, V ∈ U(2), (159)

22



J. Phys. A: Math. Theor. 42 (2009) 295202 J Ben Geloun and M N Hounkonnou

such that G({n}) = diag(G+({n},G−({n}). Then, the following algebra is satisfied[
M−

V , B+
V

] = IV , (160)

if and only if, at the matrix level

K({1})G({1}) = I2, (161)

K({p + 1})G({p + 1}) − K({p})G({p}) = I2, ∀p � 1. (162)

These problems have the solutions

G({0}) = 0, G({p}) = p(K({p}))−1, ∀p � 1. (163)

Consequently, the matrix operator,

Df = exp
[
B+

V · Zf − Z+
f · M−

V

]
, (164)

Z+
f := (

QV
V
)−1

Z† =
∞∑

n=0,±
|n〉〈n| ⊗ V Z

†
diag(hf (n))−1V †|±〉〈±|, (165)

defines a displacement operator for normal matrix NVCSs. Hence, we have

|Z; τ±;±〉 = Df

[
exp

[
1
2Z†Z

]
N(Z)V exp[−iω0τe0]V †|0,±〉] , (166)

where N(Z) is the normalization factor given by (117) and the phase factor is introduced to
maintain the theory stable under the time evolution along the lines of section 4.1. We should
comment that one should more rigorously write the exponent of the exponential factor as
written in (166) as follows:

Z†Z =
∞∑
n,±

|n〉〈n| ⊗ Z†Z|±〉〈±|. (167)

The duals of matrix displacement operators also have a well-defined sense. Indeed, defining
B−

V = (
B+

V

)†
, the algebra[

B−
V , M+

V

] = IV (168)

is trivially satisfied. We introduce the deformed dual operator

D′
f = exp

[
M+ · Zf − Z+

f · B−]
(169)

and deduce dual matrix NVCSs as

|Z; τ±;±〉′ = D′
f

[
exp

[
1

2
Z+Z

]
N ′(Z) exp[+iω0τe0]|0,±〉

]
= N ′(Z)

∞∑
n=0

|n〉 ⊗ V
R′0(n)

n!
exp[+iω0τen]Zn

diagV
†|±〉, (170)

N ′(Z) =
∞∑

n=0

[
|z|2n

(n!)2

(
R′0

+ (n)
)2

+
|w|2n

(n!)

2(
R′0

−(n)
)2

]
, (171)

where R′0(n) = K({n})!(h0
f (n − 1)!h0

f (0)
)
. A notable feature of dual NVCSs is the change

of sign of the phase factor in (170). This is related to the fact that if we keep the same notation
as in section 4.1, the state |Z; τ±;±〉′ evolves in the opposite time direction relative to his
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proper time τ±. Indeed, considering the time evolution operator UV (t) = V exp[−iω0tH]V †,
we have the Gazeau–Klauder temporal stability condition for dual states, which is written as

UV (t)|Z; τ±;±〉′ = |Z; τ± − t;±〉′. (172)

This shows that the dual state |Z; τ±;±〉′ is a kind of ‘proper time reversal state’ of its dual
partner |Z; τ±;±〉. This can also be seen by considering the following proper Schrödinger
equations:

(ih̄)∂τ±|Z; τ±;±〉 = (ih̄)(−iτ±ω0H)|Z; τ±;±〉, (173)

(ih̄)∂τ±|Z; τ±;±〉′ = (ih̄)(+iτ±ω0H)|Z; τ±;±〉′. (174)

Again, a similar treatment as above for finding solutions of the resolution of unity moment
problems makes explicit dual matrix NVCSs. There are still a number of different displacement
operators for NVCSs over matrix domains.

6.3. Deformed T operators

Ordinary concept of T operators. Types of operators allowing the mapping between canonical
and NCSs have been highlighted by Ali et al [7] and definitely used in [6]. This mapping rests
on the idea that one could transform CSs into deformed ones via an operator called T and into
dual CSs via the inverse operator T −1, with T T −1 = I, the identity onto the Hilbert space,
considered. We have, using ordinary CS notations,

|z〉 T�−→ |z〉f , |z〉 T −1�−→ |z〉′f . (175)

For the simple instance of canonical CSs and NCSs, one gets[
|z〉 = e− 1

2 |z|2
∞∑

n=0

zn

√
n!

|n〉
]

T�−→
[
|z〉f = N(|z|)

∞∑
n=0

zn

√
xn!

|n〉
]

(176)

xn! :=
n∏

k=1

xk, x0! := 1, N(|z|) =
[ ∞∑

n=0

|z|2n

xn!

]− 1
2

, (177)

with xn being a nonlinear function of n, i.e. the deformation function on which one should
impose the condition such that the norm series N(|z|) converges in a nonempty complex disk,
and the operator

T = N(|z|) e+ 1
2 |z|2

∞∑
n=0

√
n!

xn!
|n〉〈n|. (178)

A rapid verification shows that T −1 is well defined and,

T̃ −1 = N ′(|z|)N(|z|) e+ 1
2 |z|2T −1, N ′(|z|) =

[ ∞∑
n=0

|z|2n

(n!)2
(xn!)

]− 1
2

, (179)

maps |z〉 onto the dual state |z〉′f . Let us observe that, in foregoing studies, these T and T −1 do
not include normalization factors [6]. This could bring ambiguities when one wants to map
normalized CSs onto normalized deformed one. As an answer to this issue, the definitions of T
(178) and T̃ −1 (179) provide the correct operators. Furthermore, the temporal stability axiom
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is not verified by any of the above-mentioned states. Let us find an improved formulation for
canonical VCSs, NVCS and dual NVCSs allowing time translations.

Matrix T operators. We only deal with the case of normal matrix domains. One can easily
deduce the results for quaternionic and for S2-NVCSs by a similar analysis. Consider NVCSs
over normal matrices, given V ∈ U(2). Then, we define the operators

Tf = N(|Z|)(N0(|Z|))−1
∞∑

n=0,±
|n〉〈n| ⊗ V

√
n!R0(n) e+iω0τ(e0

n−en)V †|±〉〈±| (180)

N0(|Z|) =
[ ∞∑

n=0

( |z|2n

n!
+

|w|2n

n!

)]− 1
2

, (181)

where e0
n = limf (n)→1 en is the eigenenergies of the canonical model and N0(|Z|) is the

normalization factor of the canonical Gazeau–Klauder VCSs

|Z, τ±,±〉0 = N0(|Z|)
∞∑

n=0

|n〉 ⊗ V
1√
n!

e−iω0τe0
nZn

diagV
†|±〉, (182)

which could be deduced from matrix NVCSs of section 5 by taking deformation parameters
limit (κ, f (N)) → (1, 1). The phase of Tf (180) will contribute to the temporal stability of
the resulting state. A straightforward calculation gives the correct mapping of (time stable and
normalized) canonical VCSs onto (time stable and normalized) NVCSs

Tf |Z, τ±,±〉0 = |Z, τ±,±〉. (183)

Next, let us seek the operator mapping |Z, τ±,±〉0 onto |Z, τ±,±〉′. Regarding the inverse
operator

T −1
f = (N(|Z|))−1N0(|Z|)

∞∑
n=0,±

|n〉〈n| ⊗ V
1√
n!

(R0(n))−1 e−iω0τ(e0
n−en)|±〉〈±|V †, (184)

clearly this does not furnish the correct answer if we would respect all Gazeau–Klauder axioms.
However, keeping in mind that dual states are proper time reversal states of the original theory,
the operator Tf defined as

Tf = (N(|Z|))2(N0(|Z|))−2T −1
f (185)

gives the answer

Tf |Z,−τ±,±〉0 = |Z, τ±,±〉′, (186)

indicating that canonical proper time reversal VCSs are mapped onto dual NVCSs.

7. A new class of S3 NVCSs

There is another class of exactly solvable NVCSs that could be defined on the Hilbert space
V and still be continuous at z = 0. It is worth noting that although the previous construction
including the finite sequence of states into one or another tower works well, another alternative
could also be of interest. Indeed, the considered finite sequence of k-initial states of the Hilbert
space can be viewed as a third part on its own, not depending on the two towers, to which one
can assign a new vector index (here an angle parametrizing S3). The resulting NVCSs satisfy
Gazeau–Klauder properties and yield an exact solution of their moment problem associated
with the resolution of the identity.
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The following states, which we shall refer to S3 NVCSs, are parametrized by the unit
sphere S3 vectors labeled by the angles (�, φ),� = (θ1, θ2), θi ∈ [0, π ], φ ∈ [0, 2π [, and
the real time parameters (τ∗, τ±)

|z; (τ∗, τ±); (�, φ)〉 = N ∗(|z|) cos θ1

k−1∑
q=0

zq

K0−({q})! e−iω0τ∗e−
q

∣∣e−
q

〉
+N−(|z|) sin θ1 cos θ2

∞∑
n=k

zn

K0−({n})! e−iω0τ−e−
n

∣∣e−
n

〉
+N +(|z|) eiφ sin θ1 sin θ2

∞∑
n=0

zn

K0
+({n})! e−iω0τ+e+

n

∣∣e+
n

〉
, (187)

where the norm series,

N ∗(|z|) =
⎧⎨⎩

k−1∑
q=0

|z|2q(
K0−({q})!)2

⎫⎬⎭
− 1

2

, (188)

N±(|z|) =
⎧⎨⎩

∞∑
n=n±

0

|z|2n(
K0±({n})!)2

⎫⎬⎭
− 1

2

, n+
0 = 0, n−

0 = k, (189)

are such that |z| � R,R = min(R+, R−) being the minimum of the convergence radii
R± = limn→∞

(
K0

±({n}) of N±(|z|). The positive functions K0
±({n}) are, for the moment,

still free.
We sketch the proof that the S3 NVCSs (187) are of the Gazeau–Klauder type:

(i) The normalization and continuity of labeling are clearly guaranteed after a simple
evaluation.

(ii) The time evolution of these states under the unitary operator U(t) = e−iω0tHred
is such that

U(t)|z; (τ∗, τ±); (�, φ)〉 = |z; (τ∗ + t, τ± + t); (�, φ)〉, (190)

so the total set of S3 NVCSs is stable under time evolution.
(iii) Action-angle variables are ({J∗, J−, J+}, {τ∗, τ−, τ+}) such that

J∗ = (N ∗(|z|))2(cos θ1)
2

k−1∑
q=0

|z|2q(
K0−({q})!)2 e−

q , (191)

J− = (N−(|z|))2(sin θ1 cos θ2)
2

∞∑
n=k

|z|2n(
K0−({n})!)2 e−

n , (192)

J+ = (N +(|z|))2(sin θ1 sin θ2)
2

∞∑
n=k

|z|2n(
K0

+({n})!)2 e+
n. (193)

(iv) The resolution of the identity can be written as

IV =
∞∑

n=0,±

∣∣e±
n

〉〈
e±
n

∣∣ (194)

=
∫

DR×S3
dμ(z;�,φ)|z; (τ∗, τ±); (�, φ)〉〈z; (τ∗, τ±); (�, φ)|, (195)
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where the S3 measure dμ(z;�,φ) has the parametrization

dμ(z; θ, φ) = sin θ1 sin θ2 d2z dθ1 dθ2 dφ

{
W +(|z|)

∞∑
n=0

∣∣e+
n

〉〈
e+
n

∣∣
+ W−(|z|)

∞∑
n=k

∣∣e−
n

〉〈
e−
n

∣∣ + W ∗(|z|)
k−1∑
n=0

∣∣e−
n

〉〈
e−
n

∣∣} . (196)

Here W ∗(|z|) and W±(|z|) are real weight functions, which are yet unknown.
After substitution in (195), again with z = r exp(iϕ) and a measure in the radial sector

chosen as d2z = r dr dϕ with r ∈ [0, R) and ϕ ∈ [0, 2π [, one comes to the moment problems

0 � n � k − 1,

∫ R2

0
du unh∗(u) = (

K0
−({n})!)2

, (197)

n � n±
0 ,

∫ R2

0
du unh±(u) = (

K0
±({n})!)2

, (198)

where u = r2 and the moment functions h∗(r2) and h±(r2) are such that

h∗(r2) = 8π2

3
|N ∗(r)|2W ∗(r), (199)

h−(r2) = 16π2

9
|N−(r)|2W−(r), (200)

h+(r
2) = 32π2

9
|N +(r)|2W +(r). (201)

In order to solve the problems (197)–(201), we can set some constraints onto the free
deformation function K0

±({n}). Let us observe some solutions in the undeformed situation.
We then map (κ, f (N)) → (1, 1), and set the so-called action-identity constraint [28] defined
by the set of relations

J∗ = cos2 θ1
(|z|2 + e−

0

)
, (202)

J− = sin2 θ1 cos2 θ2
(|z|2 + e−

k

)
, (203)

J+ = sin2 θ1 sin2 θ2
(|z|2 + e+

0

)
. (204)

We can infer from (202)–(204), at the decoupled model limit λ(N) → 0, the constraints

K0
−(n) =

√
e−
n − e−

0 =
√

(1 + ε)n, 0 � n � k − 1, (205)

K0
−(n) =

√
e−
n − e−

k =
√

(1 + ε)n, n � k, (206)

K0
+(n) =

√
e+
n − e+

0 =
√

(1 + ε)n, n � 0, (207)

assuming a bounded from below energy spectrum, i.e. e±
n − e±

0 � 0. The subsequent norm
series,

|N ∗(r)|−2 =
k−1∑
q=0

|z|2q

(1 + ε)qq!
, (208)
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|N−(r)|−2 = e
r2

1+ε − |N ∗(r)|−2, (209)

|N +(r)|−2 = e
r2

1+ε , (210)

are of infinite radii of convergence. The moment problems can easily be performed with
solutions h∗(r) = h±(r) = exp[−r2/(1 + ε)]/(1 + ε), from which we can deduce the weights

W ∗(r) = 3e− r2

1+ε

8π2(1 + ε)
|N ∗(r)|−2 (211)

W−(r) = 9

16π2(1 + ε)

(
1 − e− r2

1+ε |N ∗(r)|−2), (212)

W +(r) = 9

32π2(1 + ε)
, (213)

indicating a new class of NVCSs.
We can turn the discussion to the deformed case. If we set K0

±({n}) = √{n}, we end up
with the moment problems

0 � n � k − 1,

∫ R2

0
du unh∗(u) = {n}!, (214)

n � n0
±,

∫ R2

0
du unh±(u) = {n}!, (215)

with n0
− = k, n0

+ = 0, whose solutions can be provided in terms of (p, q) deformations as
previously performed.

8. Conclusion

The construction of new Gazeau–Klauder-type NVCSs for spin–orbit Hamiltonians has been
achieved in this work. We have extended the action of the ladder operators to the initial finite-
dimensional set of states related to the multiphoton processes. We have also succeeded in
finding exact solutions to the resolution of the identity for different sets of NVCSs. Besides, we
have addressed the issues of different displacement and T operators which generate the variety
of states that we have found. Moreover, we have built a new class of NVCSs parametrized by
unit vectors of the S3 sphere and proved that the latter also generate an overcomplete set of
VCSs. Finally, it is worth emphasizing that Gazeau–Klauder axioms are nonempty in the full
deformation theory.
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Appendix

This appendix lists useful identities on (p, q)-deformed exponential functions. We use the
notations and convention of [11] with (p, q)-shifted products and factorials defined as, for any
real parameters a, b and α such that a 
= 0, p > 1, 0 < q < 1 and pq < 1,

[a, b;p, q]0 = 1, [a, b;p, q]α = [a, b;p, q]∞
[apα, bqα;p, q]∞

,

[a, b;p, q]∞ =
∞∏

n=0

(
1

apn
− bqn

)
.

(A.1)

Given new parameters (z, μ, ν) ∈ C × R × R, the usual exponential function ez, z ∈ C, can
be extended to the generalized (μ, ν, p, q)-exponential as follows

E (μ,ν)

(p,q) (z) =
∞∑

n=0

(
qμ

pν

)n2

zn

[p, q;p, q]n
, (A.2)

provided q2μp1−2ν � 1. The exponential function is recovered after rescaling z → z(p−1−q),
for example, and taking the limit lim(p,q)→(1,1) Eμ,ν

(p,q)(z(p
−1 −q)) = ez. Through the reduction

μ = 0 and ν = 1/2, (A.2) generates another (p, q)-exponential as

e(p,q)(z) =
∞∑

n=0

1

pn2/2

zn

[p, q;p, q]n
, |z| < p−1/2. (A.3)

The next identity stands for the (p, q)-analog of the Euler Gamma function, i.e. the (p, q)-
analog of the Ramanujan q-integral, for any n ∈ N,∫ ∞

0
dt tne(p,q)(−λ0p

−1/2t) = [p, q;p, q]n
λn+1

0 qn(n+1)/2
log

(
1

pq

)
. (A.4)
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